微软商业智能与数据挖掘
Burke Dai 查看讲师
百林哲咨询(北京)有限公司专家团队成员
曾任微软中国MSDN和TechNet的ETL版块的研发分享工作,企业级的数据仓库架构。对ETCL有比较深刻的了解和设计思想;多次处理开发基于海量数据的项目,熟悉主流BI开发工具,Reporting Servers, ProClarity, Brio, BO等
浏览:4671次
详情 DETAILS

简介

随着市场竞争的加剧、企业信息化的深入以及IT技术的发展,各企事业单位逐步意识到传统的经营手段和运营方式已经不能满足当前商业环境的竞争要求,纷纷考虑借助创新的IT手段和方法以提升自身的竞争优势。如何从企业内部众多的信息系统中提取真正反映企业运营状况的有效信息、深入挖掘价值客户群体等信息,从而为市场经营决策提供科学支持,以期对纷繁变化的市场有一定的洞察力、掌控力和预判力便成为各大企业下一阶段信息系统建设的目标和方向。而这一目标正是要靠IT领域中的数据仓库和商业智能技术来实现和达到。

目标

1、通过完整项目案例,客户将学会数据仓库设计和实施的标准方法

2、客户将学会如何分析问题,如何快速开发本行业的数据仓库项目

3、客户将学会解决数据仓库实施过程中所遇到的重点和难点问题

4、通过动手实验,客户将学会微软商业智能相关工具的操作使用

5、客户将学习最新数据仓库和商业智能领域的前沿技术

受众人群

数据科学家、数据库管理员、分析师、高级工程师、系统架构师、项目经理,以及企业的CIO和CTO。

课程时长

2天(12H)

培训特色

本次课程将介绍数据仓库和商业智能技术的基本理论和体系架构,通过大型数据仓库和商业智能项目案例阐述数据仓库和商业智能项目的实施过程和方法。通过实际应用案例介绍多维数据模型、粒度、立方体及元数据等重要概念。详细讲解构建数据仓库和商业智能体系的核心方法和技术,并模拟搭建基本的数据仓库和商业智能环境。熟悉主流数据仓库和商业智能厂商及了解相关软件产品的操作和使用。

1、培训过程中将以大型项目案例为背景,逐步讲解整个数据仓库的设计过程和实施方法

2、课程将以深入浅出的案例让学员轻松掌握数据仓库相关技术 

3、课程的重点是项目实施,将深入探讨数据仓库项目的实施问题,逐一解决

分享提纲

专题一: 
数据仓库基础知识
内容一:BI的架构1、BI体系介绍
2、ETL介绍
3、多维数据库介绍
4、前端展现介绍
5、数据挖掘介绍
内容二: SQL Server 2005 BI工具介绍1、ETL工具---SSIS介绍
2、OLAP工具---SSAS介绍
3、报表工具---SSRS介绍
4、数据挖掘工具---SSAS中的挖掘模型
内容三、BI在行业中的应用 1、现代企业BI需求概述 
2、互联网行业案例分析
3、生产制造行业案例研究
4、医药行业案例分析
5BI系统数据更新与维护
专题二: 
ETL设计部分
内容一、SSIS 简介1、ETL工具---SSIS介绍
2、OLAP工具---SSAS介绍
3、报表工具---SSRS介绍
4、数据挖掘工具---SSAS中的挖掘模型
内容二、控制流任务组件详解1、循环容器
2、执行SQL任务
3、文件系统任务
4、执行进程任务
5、执行DTS2000包任务
6、脚本任务
7、发送邮件任务
内容三:数据流任务组件详解

1、条件拆分
2、数据转换
3、派生列
4、排序
5、缓慢变化维度
6、合并联接
7、分播
8、查找和模糊查找
9、分组和模糊分组
内容四:创建SSIS1、创建控制流任务
2、创建数据流任务
3、使用数据源和数据源视图
4、使用变量
5、使用约束
6、使用表达式
7、使用连接管理器


内容五:管理SSIS


1、使用日志功能
2、使用配置文件
3、使用检查点
4、使用安全性设置
内容六:监视和优化SSIS1、使用数据查看器
2、使用包浏览器
3、SSIS包的性能优化
专题三:
海量数据优化部分
内容一:海量数据的特点 
1、什么是海量数据 
2、海量数据的特点 
3、海量数据与行业应用
内容二:16种海量数据优化方法详解 1、海量数据分区处理 
2、使用中间表和临时表 
3、分批次处理 
4、建立广泛的索引 
5、建立缓存机制 
6、使用文本和二进制格式进行处理 
7、定制强大的清洗规则和出错处理机制 
8、建立视图或者物化视图 
9、其他优化方法 
内容三:数据仓库中海量数据的处理方式 1、数据仓库中的海量数据特点 
2、数据仓库中的海量数据的处理方式 
3、分布式数据仓库的特点及应用 
内容四:海量数据高级应用 1、大型项目中海量数据的优化案例分析 
2、使用海量数据优化工具 
3、数据仓库的性能调优技巧
专题四: 
数据仓库项目案例分析
内容一:Novartis大型数据仓库项目 
1、项目介绍 
2、复杂多系统多数据源的特点 
3、ODS的使用 
4、整体项目架构设计 
5、ETL流程设计 
6、缓慢变化维度的使用 
7、MDM的使用与元数据管理 
8、抽取策略的制定
9、数据仓库更新技巧
内容二:Search Funnel数据仓库设计 1、项目介绍 
2、项目中的海量数据 
3、ETL流程中的程序设计 
4、如何设计抽取策略 
内容三:AdventureWorks数据仓库流程详解 1、案例介绍 
2、ETL流程详解 
3、SSAS流程详解 
4、SSRS流程详解
专题五: 
构建多维数据库
内容一:创建多维数据库
1、定义数据源
2、定义数据源视图
3、创建维度
4、创建多维数据集
5、设置量度组成员
内容二:统一维度模型(UDM1、定义业务实体
2、定义业务逻辑
3、定义计算成员 
内容三:MDX语言1、MDX概念
2、MDX语法结构
3、MDX的查询功能
4、使用MDX定制商务逻辑
5、MDX复杂案例分析
6、MDX与权限管理
内容四:OLAP的聚合方式1、ROLAP聚合方式
2、MOLAP聚合方式
3、HOLAP聚合方式
内容五:SSAS高级特性1、维度层次
2、货币转换
3、本地化
4、使用文件夹
5、透视
6、使用Action
7、关键性能指标(KPI)
专题六: 
前端报表展现分析
内容一:使用Report Model开发报表 
1、Report Model介绍 
2、创建数据源 
3、使用报表控件 
4、使用参数 
5、使用级连报表
内容二:使用Report Builder开发报表 1、Report Builder介绍 
2、创建数据源 
3、使用向导 
4、使用参数 
内容三:使用二维表数据源设计报表1、数据源的特点
2、设计报表
3、根据数据源更新报表
内容四:报表管理 1、权限管理 
2、角色定义 
3、报表配置 
内容五:报表分发和定制 1、报表分发 
2、报表定制 
内容六:使用ProClarity开发报表 1、ProClarity功能介绍
2、使用ProClarity开发报表 
3、ProClarity报表管理
专题七: 
数据挖掘相关技术
内容一:SQL Server 2005中九种新型数据挖掘算法模型 
1、 九种挖掘算法模型应用的背景 
2、 决策树算法与模型设计 
3、 聚类算法与模型设计 
4、 关联规则算法与模型设计 
5、 贝叶斯算法与模型设计 
6、 时间序列算法与模型设计 
7、 其他挖掘算法与模型设计 
内容二:常用挖掘模型详解 

1、决策树算法详解及工具实现 
2、聚类算法详解及工具实现 
3、关联规则算法详解及工具实现 
4、贝叶斯算法详解及工具实现 
5、时间序列算法详解及工具实现 
6、数据挖掘模型评估
内容三:DMX语言 

1、DMX语法结构 
2、使用DMX将挖掘结果导出 
3、使用DMX进行参数设置 
内容四:挖掘模型与SSIS的整合 

1、数据挖掘查询任务 
2、数据挖掘模型训练任务 
3、SSAS处理任务中的挖掘模型处理
内容五:基于挖掘模型的二次开发 

1、CS结构的开发
2、BS结构的开发



企业服务热线:400-106-2080
电话:18519192882
投诉建议邮箱:venus@bailinzhe.com
合作邮箱:service@bailinzhe.com
总部地址:
北京市-丰台区-汽车博物馆东路6号3号楼1单元902-B73(园区)
全国客户服务中心:
天津市-南开区-桂苑路15号鑫茂集团鑫茂军民园1号楼A座802-803
公众号
百林哲咨询(北京)有限公司 京ICP备2022035414号-1